Respuesta :

Answer:

Part 1) [tex]y=3(x+\frac{4}{3})^{2}-\frac{10}{3}[/tex]

Part 2) [tex]y=-2(x-\frac{3}{2})^{2}+\frac{5}{2}[/tex]

Step-by-step explanation:

Part 1) we have

[tex]y=3x^{2}+8x+2[/tex]

Factor the leading coefficient 3

[tex]y=3(x^{2}+\frac{8}{3}x)+2[/tex]

Complete the square

[tex]y=3(x^{2}+\frac{8}{3}x+\frac{64}{36})+2-\frac{64}{12}[/tex]

[tex]y=3(x^{2}+\frac{8}{3}x+\frac{64}{36})-\frac{40}{12}[/tex]

Rewrite as perfect squares

[tex]y=3(x+\frac{8}{6})^{2}-\frac{40}{12}[/tex]

simplify

[tex]y=3(x+\frac{4}{3})^{2}-\frac{10}{3}[/tex]

The vertex is the point [tex](-\frac{4}{3},-\frac{10}{3})[/tex]

Part 2) we have

[tex]y=-2x^{2}+6x-2[/tex]

Factor the leading coefficient -2

[tex]y=-2(x^{2}-3x)-2[/tex]

Complete the square

[tex]y=-2(x^{2}-3x+\frac{9}{4})-2+\frac{9}{2}[/tex]

[tex]y=-2(x^{2}-3x+\frac{9}{4})+\frac{5}{2}[/tex]

Rewrite as perfect squares

[tex]y=-2(x-\frac{3}{2})^{2}+\frac{5}{2}[/tex]

The vertex is the point [tex](\frac{3}{2},\frac{5}{2})[/tex]