Answer:
Induced EMF,[tex]\epsilon=6.28\ volts[/tex]
Explanation:
Given that,
Radius of the circular loop, r = 1 m
Time, t = 2 s
Initial magnetic field, [tex]B_i=2\ T[/tex]
Final magnetic field, [tex]B_f=6\ T[/tex]
The expression for the induced emf within the circular loop is given by :
[tex]\epsilon=\dfrac{d\phi}{dt}[/tex]
[tex]\phi[/tex] = magnetic flux
[tex]\epsilon=\dfrac{d(BA\ cos\theta)}{dt}[/tex]
Here, [tex]\theta=90\ degrees[/tex]
[tex]\epsilon=A\dfrac{d(B)}{dt}[/tex]
[tex]\epsilon=A\dfrac{B_f-B_i}{t}[/tex]
[tex]\epsilon=\pi (1)^2\times \dfrac{6-2}{2}[/tex]
[tex]\epsilon=6.28\ volts[/tex]
So, the induced emf in the loop is 6.28 volts. Hence, this is the required solution.