Find the length of line segment KL.
![Find the length of line segment KL class=](https://us-static.z-dn.net/files/d6f/56f68842af815f38e3cab22712cde5e9.png)
Answer:
[tex]\displaystyle 8\sqrt{2} = KL[/tex]
Step-by-step explanation:
Since the hypotenuse is already defined, we use the Pythagorean Theorem in reverse, using Subtraction:
[tex]\displaystyle a^2 + b^2 = c^2 \\ \\ -4^2 + 12^2 = b^2 → -16 + 144 = b^2 → \sqrt{128} = \sqrt{b^2} \\ \\ 8\sqrt{2} = b[/tex]
I am joyous to assist you anytime.
Answer:
[tex]8\sqrt{2}[/tex]
Step-by-step explanation:
Given:
A right angled triangle with:
length of hypotenuse = 12
length of base = 4
By pythagoras theorem we know that:
[tex](hypotenuse)^{2}=(base)^{2}+(altitude)^{2}[/tex]
[tex]12^{2}=4^{2}+(KL)^{2}[/tex]
[tex]KL=\sqrt{144-16}[/tex]
[tex]KL=\sqrt{128}[/tex]
[tex]KL=8\sqrt{2}[/tex]