Respuesta :
Answer:61.72 kg
Explanation:
Given
Length of rope [tex]L=10 m[/tex]
Speed at bottom of swing [tex]v=8 m/s[/tex]
Breaking strength of string [tex]T=1000 N[/tex]
At bottom Point
weight is acting downward and Tension is opposing it
Thus [tex]T-mg=\frac{mv^2}{L}[/tex]
[tex]T=mg+\frac{mv^2}{L}[/tex]
[tex]1000=m(9.8+\frac{8^2}{10})[/tex]
[tex]1000=m\cdot 16.2[/tex]
[tex]m=61.72 kg[/tex]
maximum mass Tarzan can have is [tex]61.72 kg[/tex]
The largest mass that Tarzan can have and still make it safely across the river is of 61.72 kg.
Given data:
The length of rope is, L = 10 m.
Speed at the bottom of swing is, v = 8 m/s.
Breaking strength of string is, T = 1000 N.
At the bottom point, the weight is acting downward and tension force on the string is acting upward. So, the balanced equilibrium condition is,
[tex]T - mg =\dfrac{mv^{2}}{L} \\\\T =mg+\dfrac{mv^{2}}{L} \\\\T =m(g+\dfrac{v^{2}}{L})\\\\1000 =m\times(9.8+\dfrac{8^{2}}{10})\\\\m=61.72 \;\rm kg[/tex]
Thus, we can conclude that the largest mass that Tarzan can have and still make it safely across the river is of 61.72 kg.
Learn more about the equilibrium of forces here:
https://brainly.com/question/24018969