Oil with a density of 850 kg/m3 and kinematic viscosity of 0.00062 m2 /s is being discharged by a 8-mm-diameter, 40-m-long horizontal pipe from a storage tank open to the atmosphere. The height of the liquid level above the center of the pipe is 4 m. Disregarding the minor losses, determine the flow rate of oil through the pipe.

Respuesta :

Answer:

Q = 5.06 x 10⁻⁸ m³/s

Explanation:

Given:

v=0.00062 m² /s       and ρ= 850 kg/m³  

diameter = 8 mm

length of horizontal pipe = 40 m

Dynamic viscosity =

μ =  ρv

   =850 x 0.00062

   = 0.527 kg/m·s  

The pressure at the bottom of the tank is:

P₁,gauge = ρ g h = 850 x 9.8 x 4 = 33.32 kN/m²

The laminar flow rate through a horizontal pipe is:

[tex]Q = \dfrac{\Delta P \pi D^4}{128 \mu L}[/tex]

[tex]Q= \dfrac{33.32 \times 1000 \pi\times 0.008^4}{128 \times 0.527 \times 40}[/tex]

Q = 5.06 x 10⁻⁸ m³/s