Answer
given,
annual demand (D) =200 sheets/ week
cost of unit = $10
Delivery cost = $60
Holding cost (C_0) = $60 per year
storage cost (C_c)= 30 % of unit cost
= 0.3 x $10 = $3
a) Economic order quantity Q
[tex]Q = \sqrt{\dfrac{2DC_0}{C_c}}[/tex]
[tex]Q = \sqrt{\dfrac{2\times 200 \times 52\times \$ 60}{\$ 3}}[/tex]
[tex]Q = \sqrt{416000}[/tex]
Q = 645 units/order
b) Annual set up cost
= [tex]\dfrac{D}{Q} \times C_o[/tex]
= [tex]\dfrac{200\times 52}{645} \times 60[/tex]
= $ 967.44/year
Annual storage cost
= [tex]\dfrac{Q}{2} \times C_c[/tex]
= [tex]\dfrac{645}{2} \times 3[/tex]
= $ 967.5/year
Annual consumption cost
= D x Cu
= 200 x 52 x 10
= $104000/year
Total expense
= $ 967.44/year + $ 967.5/year + $104000/year
= $ 105934.94/years