Answer:
389.78681 K
Explanation:
[tex]P_1[/tex] = Initial pressure = 55.1 mmHg
[tex]P_2[/tex] = Final pressure = 1 atm = 760 mmHg
[tex]T_2[/tex] = Boiling point
[tex]T_1[/tex] = Initial temperature = 35°C
[tex]\Delta H_{vap}[/tex] = Heat of vaporization = 32.1 kJ/mol
From the Clausius-Claperyon equation
[tex]ln\dfrac{P_2}{P_1}=(-\dfrac{\Delta H_{vap}}{R})(\dfrac{1}{T_2}-\dfrac{1}{T_1})\\\Rightarrow \dfrac{1}{T_2}=-ln\dfrac{P_2}{P_1}\dfrac{R}{\Delta H_{vap}}+\dfrac{1}{T_1}\\\Rightarrow \dfrac{1}{T_2}=-ln\dfrac{760}{55.1}\dfrac{8.314}{32.1\times 10^{3}}+\dfrac{1}{273.15+35}\\\Rightarrow T_2=\left(-ln\left(\frac{760}{55.1}\right)\frac{8.314}{32.1\times \:10^3}+\frac{1}{273.15+35}\right)^{-1}\\\Rightarrow T_2=389.78681\ K[/tex]
The normal boiling point of the substance is 389.78681 K