A college infirmary conducted an experiment to determine the degree of relief provided by three cough remedies. Each cough remedy was tried on 50 students and the accompanying data recorded. Test the hypothesis that the three cough remedies are equally effective. Use a​ P-value in your conclusion.

Respuesta :

Answer:

[tex]p_v = P(\chi^2_{4,0.05} >3.81)=0.43233[/tex]

Since the p values is higher than the significance level we FAIL to reject the null hypothesis at 5% of significance, and we can conclude that we don't have significant differences between the 3 remedies analyzed. So we can say that the 3 remedies ar approximately equally effective.

Step-by-step explanation:

A chi-square goodness of fit test "determines if a sample data matches a population".

A chi-square test for independence "compares two variables in a contingency table to see if they are related. In a more general sense, it tests to see whether distributions of categorical variables differ from each another".

Assume the following dataset:

                               NyQuil          Robitussin       Triaminic     Total

No relief                    11                     13                      9               33

Some relief               32                   28                     27              87

Total relief                7                       9                      14               30

Total                         50                    50                    50              150

We need to conduct a chi square test in order to check the following hypothesis:

H0: There is no difference in the three remedies

H1: There is a difference in the three remedies

The level os significance assumed for this case is [tex]\alpha=0.05[/tex]

The statistic to check the hypothesis is given by:

[tex]\sum_{i=1}^n \frac{(O_i -E_i)^2}{E_i}[/tex]

The table given represent the observed values, we just need to calculate the expected values with the following formula [tex]E_i = \frac{total col * total row}{grand total}[/tex]

And the calculations are given by:

[tex]E_{1} =\frac{50*33}{150}=11[/tex]

[tex]E_{2} =\frac{50*33}{150}=11[/tex]

[tex]E_{3} =\frac{50*33}{150}=11[/tex]

[tex]E_{4} =\frac{50*87}{150}=29[/tex]

[tex]E_{5} =\frac{50*87}{150}=29[/tex]

[tex]E_{6} =\frac{50*87}{150}=29[/tex]

[tex]E_{7} =\frac{50*30}{150}=10[/tex]

[tex]E_{8} =\frac{50*30}{150}=10[/tex]

[tex]E_{9} =\frac{50*30}{150}=10[/tex]

And the expected values are given by:

                               NyQuil          Robitussin       Triaminic     Total

No relief                    11                     11                       11               33

Some relief               29                   29                     29              87

Total relief                10                     10                     10               30

Total                         50                    50                    50              150

And now we can calculate the statistic:

[tex]\chi^2 = \frac{(11-11)^2}{11}+\frac{(13-11)^2}{11}+\frac{(9-11)^2}{11}+\frac{(32-29)^2}{29}+\frac{(28-29)^2}{29}+\frac{(27-29)^2}{29}+\frac{(7-10)^2}{10}+\frac{(9-10)^2}{10}+\frac{(14-10)^2}{10} =3.81[/tex]

Now we can calculate the degrees of freedom for the statistic given by:

[tex]df=(rows-1)(cols-1)=(3-1)(3-1)=4[/tex]

And we can calculate the p value given by:

[tex]p_v = P(\chi^2_{4,0.05} >3.81)=0.43233[/tex]

And we can find the p value using the following excel code:

"=1-CHISQ.DIST(3.81,4,TRUE)"

Since the p values is higher than the significance level we FAIL to reject the null hypothesis at 5% of significance, and we can conclude that we don't have significant differences between the 3 remedies analyzed.

ACCESS MORE