A buoy floating in the ocean is bobbing in simple harmonic motion with period 5 seconds and amplitude 4ft. Its displacement d from sea level at time =t0 seconds is −4ft, and initially it moves upward. (Note that upward is the positive direction.) Give the equation modeling the displacement d as a function of time t.

Respuesta :

Answer:

[tex]d=-4Cos(\frac{2\pi}{5}t)[/tex]

Step-by-step explanation:

We are given that

Period =5 s

Amplitude=4 ft

Displacement d from sea level at time [tex]t=0s=-4 ft[/tex]

We have to find the modelling equation displacement d as a function of time.

We know that

The general equation of sinusoidal function is given by

[tex]y(t)=Acos(Bt-C)+D[/tex]

B=[tex]\frac{2\pi}{period}=\frac{2\pi}{5}[/tex]

When t=0, y=d=-4 ft, D=0

Substitute the values then we get

[tex]-4=4Cos(\frac{2\pi}{5}(0)-C)+0[/tex]

[tex]-4=4Cos(-C)[/tex]

[tex]Cos(-C)=-1[/tex]

We know that Cos(-x)=Cos x

[tex]Cos C=-1[/tex]

[tex]Cos C=Cos \pi[/tex]  ([tex]cos(\pi)=-1[/tex])

[tex]C=\pi[/tex]

Substitute the values then, we get

[tex]d=4Cos(\frac{2\pi}{5}t-\pi)+0[/tex]

[tex]d=4Cos(-(\pi-\frac{2\pi}{5}t))[/tex]

[tex]d=4Cos(\pi-\frac{2\pi}{5}t)[/tex]

[tex]Cos(\pi-x)=-Cosx[/tex]

[tex]d=-4Cos(\frac{2\pi}{5}t)[/tex]