Answer:
[tex]d=-4Cos(\frac{2\pi}{5}t)[/tex]
Step-by-step explanation:
We are given that
Period =5 s
Amplitude=4 ft
Displacement d from sea level at time [tex]t=0s=-4 ft[/tex]
We have to find the modelling equation displacement d as a function of time.
We know that
The general equation of sinusoidal function is given by
[tex]y(t)=Acos(Bt-C)+D[/tex]
B=[tex]\frac{2\pi}{period}=\frac{2\pi}{5}[/tex]
When t=0, y=d=-4 ft, D=0
Substitute the values then we get
[tex]-4=4Cos(\frac{2\pi}{5}(0)-C)+0[/tex]
[tex]-4=4Cos(-C)[/tex]
[tex]Cos(-C)=-1[/tex]
We know that Cos(-x)=Cos x
[tex]Cos C=-1[/tex]
[tex]Cos C=Cos \pi[/tex] ([tex]cos(\pi)=-1[/tex])
[tex]C=\pi[/tex]
Substitute the values then, we get
[tex]d=4Cos(\frac{2\pi}{5}t-\pi)+0[/tex]
[tex]d=4Cos(-(\pi-\frac{2\pi}{5}t))[/tex]
[tex]d=4Cos(\pi-\frac{2\pi}{5}t)[/tex]
[tex]Cos(\pi-x)=-Cosx[/tex]
[tex]d=-4Cos(\frac{2\pi}{5}t)[/tex]