Answer:
Explanation:
Obtain the following properties at 6MPa and 600°C from the table "Superheated water".
[tex]h_1=3658.8KL/Kg\\s_1=7.1693kJ/kg.k[/tex]
Obtain the following properties at 10kPa from the table "saturated water"
[tex]h_{f2}=191.81KJ/Kg.K\\h_{fg2}=2392.1KJ/Kg\\s_{f2}=0.6492KJ/Kg.K\\s_{fg2}=7.4996KJ/Kg.K[/tex]
Calculate the enthalpy at exit of the turbine using the energy balance equation.
[tex]\frac{dE}{dt}=Q-W+m(h_1-h_2)[/tex]
Since, the process is isentropic process [tex]Q=0[/tex]
[tex]0=0-W+m(h_1-h_2)\\h_2=h_1-\frac{W}{m}\\\\h_2=3658.8-\frac{2626}{2}\\\\=2345.8kJ/kg[/tex]
Use the isentropic relations:
[tex]s_1=s_{2s}\\s_1=s_{f2}+x_{2s}s_{fg2}\\7.1693=6492+x_{2s}(7.4996)\\x_{2s}=87[/tex]
Calculate the enthalpy at isentropic state 2s.
[tex]h_{2s}=h_{f2}+x_{2s}.h_{fg2}\\=191.81+0.87(2392.1)\\=2272.937kJ/kg[/tex]
a.)
Calculate the isentropic turbine efficiency.
[tex]\eta_{turbine}=\frac{h_1-h_2}{h_1-h_{2s}}\\\\=\frac{3658.8-2345.8}{3658.8-2272.937}=0.947=94.7%[/tex]
b.)
Find the quality of the water at state 2
since [tex]h_f[/tex] at 10KPa <[tex]h_2[/tex]<[tex]h_g[/tex] at 10KPa
Therefore, state 2 is in two-phase region.
[tex]h_2=h_{f2}+x_2(h_{fg2})\\2345.8=191.81+x_2(2392.1)\\x_2=0.9[/tex]
Calculate the entropy at state 2.
[tex]s_2=s_{f2}+x_2.s_{fg2}\\=0.6492+0.9(7.4996)\\=7.398kJ/Kg.K[/tex]
Calculate the rate of entropy production.
[tex]S=\frac{Q}{T}+m(s_2-s_1)[/tex]
since, Q = 0
[tex]S=m(s_2-s_1)\\=2\frac{kg}{s}(7.398-7.1693)kJ/kg\\=0.4574kW/k[/tex]