Answer:
Considering a triangle like the one of the figures, you can obtain the total magnetic force applied on it like the addition of the forces applied to each of the 3 sides.
Been the magnetic force formula:
[tex]F=\int\limits^a_b {I} \, \overline {dx} \times \overline {B}[/tex]
For each segment:
Segment 1 (from [0,0,0] to [a,0,0]):
[tex]F=\int\limits^a_0 {I} \, \overline {x}dx \times B \overline {z}=-IBa\overline {y}[/tex]
Segment 2 (from [a,0,0] to [0,a,0]):
[tex]F=\int\limits^{(0,a)}_{(a,0)} {I} \, \frac{\sqrt{2} }{2} (\overline {x}+\overline {y})dx \times B \overline {z}=IB2a(\overline {x}+\overline {y})[/tex]
Segment 3 (From [0,a,0] to [0,0,0]):
[tex]F=\int\limits^0_a {I} \, \overline {y}dx \times B \overline {z}=-IBa\overline {x}[/tex]
Total force on the wire loop:
[tex]F_{T} =F_{1} +F_{2} +F_{3} =-IBa\overline {y}+IB2a(\overline {x}+\overline {y})-IBa\overline {x}=0N[/tex]