This question is wrong because of not correct values.The Correct question is
A gas in a cylinder is held at a constant pressure of 1.80×10⁵Pa and is cooled and compressed from 1.70m³ to 1.20m³. The internal energy of the gas decreases by 1.40×10⁵J.
(a) Find the work done by the gas.
(b) Find the absolute value of the heat flow, |Q|, into or out of the gas, and state the direction of the heat flow.
(c) Does it matter whether the gas is ideal? Why or why not?
Answer:
(a) W= -9×10⁴J
(b) |Q|=2.3×10⁵
(c) It does not matter whether gas is ideal or non-ideal
Explanation:
Given
V₁=1.70m³
V₂=1.20m³
p=1.8×10⁵ pa
ΔU= -1.40×10⁵J
For (a) work done by gas
[tex]W=p(V_{2}-V_{1} )\\W=1.8*10^{5}(1.2-1.7)\\ W=-9*10^{4}J[/tex]
For (b) Heat flow |Q|
|Q|=ΔU+W
[tex]Q=(-1.4*10^{5}) +(-9*10^{4})\\Q=-2.3*10^{5}J\\So\\|Q|=|-2.3*10^{5}|\\|Q|=2.3*10^{5}J[/tex]
For (c) part
It does not matter whether the gas is ideal or not because the first law of thermodynamics which applied in our solution could applied to any material ideal or non ideal