Respuesta :

Answer: 3

Step-by-step explanation:

Given :

[tex]Log_{7}[/tex] 343

We need to write 343 in index form of 7.

343 is the same as [tex]7^{3}[/tex] , replacing 343 with [tex]7^{3}[/tex] , we have

[tex]Log_{7}[/tex] [tex]7^{3}[/tex]

Recall one on the law of Logarithm :

[tex]Log_{a}[/tex][tex]b^{c}[/tex] can be written as c [tex]Log_{a}[/tex]b

So, [tex]Log_{7}[/tex] [tex]7^{3}[/tex] can be written as ;

3[tex]Log_{7}[/tex] 7

Also from the laws of Logarithms , [tex]Log_{a}[/tex] a = 1

so , Log_{7}[/tex] 7 = 1

The solution then becomes

3 x 1 = 3

Therefore :

[tex]Log_{7}[/tex] 343 = 3

ACCESS MORE