Respuesta :
Answer:
mc=5.84kg
Explanation:
Given
m i = 106.9 l b s
m i = 48480.7 g
T 1 = T i = 0 °C
T 2 = T s = 100 °C
C p i = 2.10 J / g − C
C p w = 4.18 J / g − C
H f = 333 J / g
H v = 2258 J / g
H c = 25000.00 J / g
According to the first law of thermodynamics, the heat supplied by the coal must be equal to the heat required to convert the ice into water and then the water into steam:
Q c = Q i + Q w + Q s . . . . . . . . . . . . . . . . . . .(eq:1)
Since the water will undergo a change in temperature (0 C to 100 C )
Q i = m i ∗ H f..........(eq:2)
Q s= m s ∗ H v..........(eq:3)
heat allows for the change in temperature, calculated as:
Q w = m w ∗ C p w ∗ ( T 2 − T 1 )...........(eq:4)
Integrating Equations 2, 3 and 4 into Equation 1, we get:
Q c = m i ∗ H f + m w ∗ C p w ∗ ( T 2 − T 1 ) + m s ∗ H v ...........(eq:5)
m i = m w = m s = m
Q c = m ∗ ( H f + C p w ∗ ( T 2 − T 1 ) + H v )
Q c = 48480.7 ∗ ( 333 + 4.18 ∗ ( 100 − 0 ) + 2258 ) J
Q c = 145878426.3 J
The heat of the coal is the product of the mass of the coal and its heat of combustion.
Thus:
m c = Q c / H c
m c = 145878426.3/ 2.5 x 10 4 g
m c = 5835.137052 g
mc=5.84kg