Respuesta :
Answer:
[tex]\Delta m =68.654\ g[/tex]
Explanation:
Given:
- mass of ice, [tex]m_i=600\ g[/tex]
- initial temperature of ice, [tex]T_{ii}=-15\ ^{\circ}C[/tex]
- mass of water added, [tex]m_w=100\ g[/tex]
- initial temperature of water, [tex]T_{iw}=20\ ^{\circ}C[/tex]
- specific heat capacity of ice, [tex]c_i=2.090\ J.g^{-1}.^{\circ}C^{-1}[/tex]
- specific heat capacity of water, [tex]c_w=4.186\ J.g^{-1}.^{\circ}C^{-1}[/tex]
- latent heat of fusion, [tex]L_f=333\ J.g^{-1}[/tex]
According to question a part of water freezes while the other remains liquid:
So,
final temperature of the mixture, [tex]T_f=0 ^{\circ}C[/tex]
Now using the equation of heat:
Heat required by the total ice of given temperature to melt completely:
[tex]Q_i=m_i.c_i.\Delta T[/tex]
[tex]Q_i=600\times 2.090\times (0-(-15))[/tex]
[tex]Q_i=18810\ J[/tex] .....................................(1)
Heat released by the total mass of given water to come to freezing point:
[tex]Q_w=m_w.c_w.\Delta T[/tex]
[tex]Q_w=100\times 4.186\times (20)[/tex]
[tex]Q_w=8372\ J[/tex] ...............................................(2)
Now from the eq. (1) & (2) the difference in heat is equivalent to the mass of water frozen.
[tex]\Delta Q=Q_i-Q_w[/tex]
[tex]\Delta Q=18810-8372[/tex]
[tex]\Delta Q=10438\ J[/tex]
Now the mass of water frozen:
[tex]\Delta Q = m.L_f[/tex]
[tex]m=\frac{\Delta Q}{L_f}[/tex]
[tex]m=\frac{10438}{333}[/tex]
[tex]m=31.345\ g[/tex] of more ice is formed from the water.
Mass of remaining liquid:
[tex]\Delta m =m_w-m[/tex]
[tex]\Delta m =100-31.345[/tex]
[tex]\Delta m =68.654\ g[/tex]