contestada

600-g of ice at −15℃ is in a calorimeter when 100 g of water at 20℃ is added to it. Water cools down and part of it freezes as a result. Find the mass of the remaining liquid water. Neglect the heat capacity of the calorimeter. [[tex]c_i[/tex] = 0.5 cal/g/℃ = 2090 J/kg/℃, [tex]c_w[/tex] = 1 cal/g/℃ = 4186J/kg/℃, [tex]L_f[/tex] = 79.7 cal/g = 3.33 × 10⁵ J/kg]

Respuesta :

Answer:

[tex]\Delta m =68.654\ g[/tex]

Explanation:

Given:

  • mass of ice, [tex]m_i=600\ g[/tex]
  • initial temperature of ice, [tex]T_{ii}=-15\ ^{\circ}C[/tex]
  • mass of water added, [tex]m_w=100\ g[/tex]
  • initial temperature of water, [tex]T_{iw}=20\ ^{\circ}C[/tex]
  • specific heat capacity of ice, [tex]c_i=2.090\ J.g^{-1}.^{\circ}C^{-1}[/tex]
  • specific heat capacity of water, [tex]c_w=4.186\ J.g^{-1}.^{\circ}C^{-1}[/tex]
  • latent heat of fusion, [tex]L_f=333\ J.g^{-1}[/tex]

According to question a part of water freezes while the other remains liquid:

So,

final temperature of the mixture, [tex]T_f=0 ^{\circ}C[/tex]

Now using the equation of heat:

Heat required by the total ice of given temperature to melt completely:

[tex]Q_i=m_i.c_i.\Delta T[/tex]

[tex]Q_i=600\times 2.090\times (0-(-15))[/tex]

[tex]Q_i=18810\ J[/tex] .....................................(1)

Heat released by the total mass of given water to come to freezing point:

[tex]Q_w=m_w.c_w.\Delta T[/tex]

[tex]Q_w=100\times 4.186\times (20)[/tex]

[tex]Q_w=8372\ J[/tex] ...............................................(2)

Now from the eq. (1) & (2) the difference in heat is equivalent to the mass of water frozen.

[tex]\Delta Q=Q_i-Q_w[/tex]

[tex]\Delta Q=18810-8372[/tex]

[tex]\Delta Q=10438\ J[/tex]

Now the mass of water frozen:

[tex]\Delta Q = m.L_f[/tex]

[tex]m=\frac{\Delta Q}{L_f}[/tex]

[tex]m=\frac{10438}{333}[/tex]

[tex]m=31.345\ g[/tex] of more ice is formed from the water.

Mass of remaining liquid:

[tex]\Delta m =m_w-m[/tex]

[tex]\Delta m =100-31.345[/tex]

[tex]\Delta m =68.654\ g[/tex]

ACCESS MORE