Answer:
99% Confidence interval: (17.9064,19.8136)
Step-by-step explanation:
We are given the following data set:
22,18,19,21,18,19,18,17,20,20,18,17,20,19,20,18,17,18,16,21,18,21
Formula:
[tex]\text{Standard Deviation} = \sqrt{\displaystyle\frac{\sum (x_i -\bar{x})^2}{n-1}}[/tex]
where [tex]x_i[/tex] are data points, [tex]\bar{x}[/tex] is the mean and n is the number of observations.
[tex]Mean = \displaystyle\frac{\text{Sum of all observations}}{\text{Total number of observation}}[/tex]
[tex]Mean =\displaystyle\frac{415}{22} = 18.86[/tex]
Sum of squares of differences = 52.59
[tex]S.D = \sqrt{\frac{52.59}{21}} = 1.58[/tex]
99% Confidence interval:
[tex]\bar{x} \pm t_{critical}\displaystyle\frac{s}{\sqrt{n}}[/tex]
Putting the values, we get,
[tex]t_{critical}\text{ at degree of freedom 21 and}~\alpha_{0.01} = \pm 2.831[/tex]
[tex]18.86 \pm 2.831(\frac{1.58}{\sqrt{22}} ) = 18.86 \pm 0.9536 = (17.9064,19.8136)[/tex]
Option A) With 99% confidence, the mean miles per gallon in the population of 2008 SUVs is somewhere in the interval.