Answer:
The ball rolled a distance of 54 m.
Explanation:
Given:
Initial velocity of the ball is, [tex]u=5\ m/s[/tex]
Final velocity of the ball is, [tex]v=7\ m/s[/tex]
Time for rolling is, [tex]t=9\ s[/tex]
The distance of rolling is, [tex]S=?[/tex]
First, let us find the acceleration of the ball using Newton's equation of motion as:
[tex]v=u+at\\a=\frac{v-u}{t}\\a=\frac{7-5}{9}=\frac{2}{9}\ m/s^2[/tex]
Now, displacement of the ball can be determined using the following equation of motion:
[tex]v^2=u^2+2aS[/tex]
Rewriting the above in terms of 'S', we get
[tex]S=\frac{v^2-u^2}{2a}[/tex]
Plug in the known values and solve for 'S'. This gives,
[tex]S=\frac{7^2-5^2}{2\times \frac{2}{9}}\\\\S=\frac{49-25}{\frac{4}{9}}\\\\S=\frac{9\times 24}{4}\\\\S=9\times 6=54\ m[/tex]
Therefore, the ball rolled a distance of 54 m.