Respuesta :
Answer: 3618 seconds
Explanation:
[tex]\text{Number of moles}=\frac{\text{Given mass}}{\text{Molar mass}}=\frac{4g}{27g/mol}=0.15moles[/tex]
According to mole concept:
1 mole of an atom contains [tex]6.022\times 10^{23}[/tex] number of particles.
We know that:
Charge on 1 electron = [tex]1.6\times 10^{-19}C[/tex]
Charge on 1 mole of electrons = [tex]1.6\times 10^{-19}\times 6.022\times 10^{23}=96500C[/tex]
[tex]AlCl_3\rightarrow Al^{3+}+3Cl^-[/tex]
At cathode: [tex] Al^{3+}+3e^-\rightarrow Al[/tex]
1 mole of aluminium is deposited by = [tex]3\times 96500=289500C[/tex]
Thus 0.15 moles of aluminium is deposited by = [tex]\frac{289500C}{1}\times 0.15=43425C[/tex]
To calculate the time required, we use the equation:
[tex]I=\frac{q}{t}[/tex]
where,
I = current passed =12.0 A
q = total charge = [tex]43425C[/tex]
t = time required in seconds = ?
Putting values in above equation, we get:
[tex]12.0A=\frac{43425C}{t}\\\\t=\frac{43425C}{12.0A}=3618s[/tex]
Hence, the amount of time required to produce 4.00 g of aluminum metal from the electrolysis of molten [tex]AlCl_3[/tex] with an electrical current of 12.0 A is 3618 seconds