Answer:
[tex]d=1600\ m[/tex]
Explanation:
Let d be the displacement of the car.
Given:
[tex]Displacement=100\ meter[/tex]
The displacement formula of an object is.
[tex]d=v_{1} t+\frac{1}{2} a(t)^{2}[/tex]
Where [tex]v_{1} = initial\ velocity[/tex]
[tex]t=time[/tex]
[tex]a=acceleration[/tex]
If the car start from rest then [tex]v_{1} = 0[/tex]
[tex]d=0+\frac{1}{2} a(t)^{2}[/tex]
[tex]d=\frac{1}{2} a(t)^{2}[/tex]
now if the same car will accelerate from rest for four times of the previous time interval
Now substitute [tex]t=4t[/tex] in above equation
[tex]d=\frac{1}{2} a(4t)^{2}[/tex]
[tex]d=16\frac{1}{2} a(t)^{2}[/tex]
So the displacement will be 16 times more = [tex]16\times displacement[/tex]
[tex]d = 16\times 100[/tex]
[tex]d = 1600\ meter[/tex]
Therefore, the displacement is [tex]1600\ meter[/tex].