Answer:
[tex]x=4[/tex]
[tex]y=16[/tex]
Step-by-step explanation:
Given system of equations:
A) [tex]-4x+5y=64[/tex]
B) [tex]-x+y=12[/tex]
Solving the system by combining the equations.
Rearranging equation B, to solve for [tex]y[/tex] in terms of [tex]x[/tex]
Adding both sides by [tex]x[/tex]
[tex]-x+y+x=12+x[/tex]
[tex]y=12+x[/tex]
Combining equations by substituting rearranged equation B into equation A in place of [tex]y[/tex].
[tex]-4x+5(12+x)=64[/tex]
Using distribution.
[tex]-4x+60+5x=64[/tex]
Simplifying.
[tex]x+60=131[/tex]
Subtracting both sides by 60.
[tex]x+60-60=64-60[/tex]
∴ [tex]x=4[/tex] (Answer)
We can plugin [tex]x=4[/tex] in the rearranged equation B to get value of [tex]y[/tex]
[tex]y=12+4[/tex]
∴[tex]y=16[/tex] (Answer)