Respuesta :

Answer:

x=-5, x=9

Step-by-step explanation:

we know that

The formula to solve a quadratic equation of the form

[tex]ax^{2} +bx+c=0[/tex]

is equal to

[tex]x=\frac{-b\pm\sqrt{b^{2}-4ac}} {2a}[/tex]

in this problem we have

[tex]2x^{2} -8x-90[/tex]  

equate to zero

[tex]2x^{2} -8x-90=0[/tex]  

so

[tex]2=-1\\b=-8\\c=-90[/tex]

substitute in the formula

[tex]x=\frac{-(-8)\pm\sqrt{-8^{2}-4(2)(-90)}} {2(2)}[/tex]

[tex]x=\frac{8\pm\sqrt{784}} {4}[/tex]

[tex]x=\frac{8\pm28} {4}[/tex]

[tex]x=\frac{8+28} {4}=9[/tex]

[tex]x=\frac{8-28} {4}=-5[/tex]

therefore

The solutions are x=-5, x=9