Respuesta :
Answer:
Part A. 5.36x10²³ molecules of air
Part B. 6.9kg
Explanation:
Part A.
To calculate the number of molecules of the air we need first find the number of moles of air using the equation of ideal gas law:
[tex] PV = nRT [/tex] (1)
where P: is the pressure, V: is the volume, n: is the number of moles of the gas, R: is the gas constant and T: is the temperature
[tex] n = \frac{PV}{RT} = \frac{735torr \cdot 1atm/760torr \cdot 2.35L}{0.082 Latm/Kmol \cdot (37 + 273)K} = 0.089 moles [/tex]
Now by using the Avogadro's number we can find the number of molecules of air:
[tex] number of molecules = \frac{6.022 \dot 10^{23}}{1mol} \cdot 0.089moles = 5.36 \cdot 10^{22} molecules [/tex]
Part B.
Similarly, to calculate the mass of air first we need to detemine the number of moles using equation (1):
[tex] n = \frac{PV}{RT} = \frac{1.07atm \cdot 5.0\cdot 10^{3}L}{0.082 Latm/Kmol \cdot (0.5 + 273)K} = 238.55 moles [/tex]
So, the mass of air is:
[tex] m = moles \cdot M [/tex]
where M: is the average molar mass of air
[tex] m = 238.55moles \cdot 28.98g/mol = 6.9 kg [/tex]
I hope it helps you!