You know that you sound better when you sing in the shower. This has to do with the amplification of frequencies that correspond to the standing-wave resonances of the shower enclosure. A shower enclosure is created by adding glass doors and tile walls to a standard bathtub, so the enclosure has the dimensions of a standard tub, 0.75 m wide and 1.5 m long. Standing sound waves can be set up along either axis of the enclosure. What are the lowest two frequencies that correspond to resonances on each axis of the shower

Respuesta :

Answer:

a) L = 0.75m   f₁ = 113.33 Hz , f₃ = 340 Hz, b) L=1.50m   f₁ = 56.67 Hz ,  f₃ = 170 Hz

Explanation:

This resonant system can be simulated by a system with a closed end, the tile wall and an open end where it is being sung

In this configuration we have a node at the closed end and a belly at the open end whereby the wavelength

With 1  node         λ₁ = 4 L

With 2 nodes      λ₂ = 4L / 3

With 3 nodes       λ₃ = 4L / 5

The general term would be      λ_n= 4L / n         n = 1, 3, 5, ((2n + 1)

The speed of sound is

         v = λ f

         f = v / λ

         f = v  n / 4L

Let's consider each length independently

L = 0.75 m

        f₁ = 340 1/4 0.75 = 113.33 n

         f₁ = 113.33 Hz

        f₃ = 113.33   3

       f₃ = 340 Hz

L = 1.5 m

       f₁ = 340 n / 4 1.5 = 56.67 n

       f₁ = 56.67 Hz

       f₃ = 56.67 3

       f₃ = 170 Hz

ACCESS MORE