Answer:
a) [tex]S_{a}(t)=16Kg-0.16Kg*\frac{t}{min}[/tex]
b) [tex]S_{a}(20)=12.8Kg[/tex]
Step-by-step explanation:
It can be seen in the graph that the water velocity and solution velocity is the same, but the salt concentation will be lower
Water velocity [tex]V_{w} = 60\frac{L}{min}[/tex]
Solution velocity [tex]V_{s} = 60\frac{L}{min}[/tex]
Brine concentration = [tex]\frac{6,000L}{16Kg}=375\frac{L}{Kg}[/tex]
a) Amount of salt as a funtion of time Sa(t)
[tex]S_{a}(t)=16Kg-\frac{60Kg*L}{375L}*\frac{(t)}{min}=[tex]16Kg-0.16Kg*\frac{t}{min}[/tex]
b) [tex]S_{a}(20)=16Kg-0.16\frac{Kg}{min}*(20min)=16Kg-3.2Kg=12.8Kg[/tex]
This value was to be expected since as the time passes the concentration will be lower due to the entrance to the pure water tank