Respuesta :
Answer:
[tex]y=0.00673(253) +90.190=91.894[/tex]
And the difference is given by:
[tex]r_i =91.894-83=8.894[/tex]
Step-by-step explanation
We assume that th data is this one:
x: 242-255 -227-251-262-207-140
y: 91- 81 -91 - 92 - 102 - 94 - 91
Find the least-squares line appropriate for this data.
For this case we need to calculate the slope with the following formula:
[tex]m=\frac{S_{xy}}{S_{xx}}[/tex]
Where:
[tex]S_{xy}=\sum_{i=1}^n x_i y_i -\frac{(\sum_{i=1}^n x_i)(\sum_{i=1}^n y_i)}{n}[/tex]
[tex]S_{xx}=\sum_{i=1}^n x^2_i -\frac{(\sum_{i=1}^n x_i)^2}{n}[/tex]
So we can find the sums like this:
[tex]\sum_{i=1}^n x_i =242+255+227+251+262+207+140=1584[/tex]
[tex]\sum_{i=1}^n y_i =91+ 81 +91 + 92 + 102 + 94 + 91=642[/tex]
[tex]\sum_{i=1}^n x^2_i =242^2 +255 ^2 +227^2 +251^2 +262^2 +207^2 +140^2=369212[/tex]
[tex]\sum_{i=1}^n y^2_i =91^2 + 81 ^2 +91 ^2 + 92 ^2 + 102 ^2 + 94 ^2 + 91^2=59108[/tex]
[tex]\sum_{i=1}^n x_i y_i =242*91 +255*81 +227*91 +251*92 +262*102 +207*94 +140*91=145348[/tex]
With these we can find the sums:
[tex]S_{xx}=\sum_{i=1}^n x^2_i -\frac{(\sum_{i=1}^n x_i)^2}{n}=369212-\frac{1584^2}{7}=10775.429[/tex]
[tex]S_{xy}=\sum_{i=1}^n x_i y_i -\frac{(\sum_{i=1}^n x_i)(\sum_{i=1}^n y_i)}{n}=145348-\frac{1584*642}{7}=72.571[/tex]
And the slope would be:
[tex]m=\frac{72.571}{10775.429}=0.00673[/tex]
Now we can find the means for x and y like this:
[tex]\bar x= \frac{\sum x_i}{n}=\frac{1584}{7}=226.286[/tex]
[tex]\bar y= \frac{\sum y_i}{n}=\frac{642}{7}=91.714[/tex]
And we can find the intercept using this:
[tex]b=\bar y -m \bar x=91.714-(0.00673*226.286)=90.190[/tex]
So the line would be given by:
[tex]y=0.00673 x +90.190[/tex]
The prediction for 253 seconds is:
[tex]y=0.00673(253) +90.190=91.894[/tex]
And the difference is given by:
[tex]r_i =91.894-83=8.894[/tex]