Answer
given,
mass of glider = 0.23 Kg
spring constant = k = 4.50 N/m
spring stretched to 0.130 m
The springs potential energy =
[tex]U = \dfrac{1}{2}kx^2[/tex]
[tex]U = \dfrac{1}{2}\times 4.5 \times 0.13^2[/tex]
U = 0.038 J
at x = 0,the only energy will be kinetic .
[tex] \dfrac{1}{2}mv^2=0.038[/tex]
[tex] \dfrac{1}{2}\times 0.23 \times v^2=0.038[/tex]
v² = 0.3304
v = 0.575 m/s
displacement of the glider
using conservation of energy
[tex] \dfrac{1}{2}mv^2=\dfrac{1}{2}kx^2[/tex]
[tex] x =v\sqrt{\dfrac{m}{k}}[/tex]
[tex] x =3\times \sqrt{\dfrac{0.23}{4.5}}[/tex]
x = 0.678 m