Answer
given,
mass of disk = 2 Kg
radius = 0.1 m
time = 10 sec
a) 800 rpm to rad/s
= [tex]800 \times \dfrac{2\pi}{60}[/tex]
= [tex]83.78\ rad/s[/tex]
b) 740 rpm to rad/s
= [tex]740 \times \dfrac{2\pi}{60}[/tex]
= [tex]77.49\ rad/s[/tex]
c) Angular acceleration
[tex]\alpha = \dfrac{\omega_f - \omega_i}{t}[/tex]
[tex]\alpha = \dfrac{83.78 -77.49}{10}[/tex]
[tex]\alpha =0.629\ rad/s^2[/tex]
d) moment of inertia of disc
[tex]I = \dfrac{1}{2}mr^2[/tex]
[tex]I = \dfrac{1}{2}\times 2 \times 0.1^2[/tex]
I = 0.01 Kg.m²
e) τ = I α
τ = 0.01 x 0.629
τ = 6.29 x 10⁻³ N.m
f) impulse = Force x time
[tex]J= \dfrac{\tau}{r}\times t[/tex]
[tex]J= \dfrac{6.29 \times 10^{-3}}{0.1}\times 10[/tex]
J = 0.629 Ns
g) Work done
W = Δ KE
[tex]W = \dfrac{1}{2}I(\omega_f^2-\omega_i^2)[/tex]
[tex]W = \dfrac{1}{2}\times 0.01\times (83.78^2-77.49^2)[/tex]
W = 5.07 J