Answer:
0.00073
Explanation:
[tex]\dfrac{N^*}{N_0}[/tex] = Fraction of atoms of the element in the excited state
[tex]\dfrac{g^*}{g_0}=\dfrac{4}{2}[/tex] = Fraction of states
T = Temperature = 4471 K
h = Planck's constant = [tex]6.626\times 10^{-34}\ m^2kg/s[/tex]
[tex]k[/tex] = Boltzmann constant = [tex]1.38\times 10^{-23}\ J/K[/tex]
[tex]\lambda[/tex] = Wavelength = 407.3 nm
We have the relation
[tex]\dfrac{N^*}{N_0}=\dfrac{g^*}{g_0}e^{-\dfrac{\Delta E}{kt}}[/tex]
Change in energy is given by
[tex]\Delta E=\dfrac{hc}{\lambda}\\\Rightarrow \Delta E=\dfrac{6.626\times 10^{-34}\times 3\times 10^{8}}{407.3\times 10^{-9}}[/tex]
[tex]\dfrac{N^*}{N_0}=\dfrac{4}{2}e^{-\dfrac{\dfrac{6.626\times 10^{-34}\times 3\times 10^{8}}{407.3\times 10^{-9}}}{1.38\times 10^{-23}\times 4471}}\\\Rightarrow \dfrac{N^*}{N_0}=0.00073[/tex]
The fraction of atoms of the element in the excited state is 0.00073