Answer:
The ration of the molar solubility is 165068.49.
Explanation:
The solubility reaction of the magnesium hydroxide in the pure water is as follows.
[tex]Mg(OH)_{2}\Leftrightarrow Mg^{2+}(aq)+2(OH)^{-}(aq)[/tex]
[tex][Mg^{2+}][OH^{-}][/tex]
Initial 0 0
Equili +S +2S
Final S 2S
[tex]K_{sp}=[Mg^{2+}][OH^{-}][/tex]
[tex]5.61\times 10^{-11}=(S)(2S)^{2}[/tex]
[tex]S=(\frac{5.61\times 10^{-11}}{4})^{1/3}=2.41\times 10^{-4}M[/tex]
Solubility of [tex]Mg(OH)_{2}[/tex] in 0.180 M NaOH is a follows.
[tex]Mg(OH)_{2}\Leftrightarrow Mg^{2+}(aq)+2(OH)^{-}(aq)[/tex]
[tex][Mg^{2+}][OH^{-}][/tex]
Initial 0 0
Equili +S +2S
Final S 2S+0.180M
[tex]K_{sp}=[Mg^{2+}][OH^{-}][/tex]
[tex]5.61\times 10^{-11}=(S)(2S+0.180)^{2}[/tex]
[tex]S=1.46\times 10^{-9}M[/tex]
[tex]Ratio\,of\,solubility=\frac{2.41\times 10^{-4}}{1.46\times 10^{-9}}=165068.49[/tex]
Therefore, The ration of the molar solubility is 165068.49.