Answer:
[tex]x=-3\ or\ \frac{5}{2}[/tex]
Step-by-step explanation:
Given:
Given equation is.
[tex]2x^{2} +3x-10=2x+5[/tex]
Find values of x?
Solution.
[tex]2x^{2} +3x-10=2x+5[/tex]
[tex]2x^{2} +3x-10-2x-5=0[/tex]
[tex]2x^{2} +x-15=0[/tex]
Find the roots of the equation.
compare the above equation with [tex]ax^{2} +bx+c=0[/tex]
Therefore, [tex]a=2,b=1,c=-15[/tex]
[tex]x=\frac{-b\pm\sqrt{(b)^{2}-4ac}}{2a}[/tex]
Put a,b and c value in above equation.
[tex]x=\frac{-1\pm\sqrt{(1)^{2}-4(2)(-15)}}{2(2)}[/tex]
[tex]x=\frac{-1\pm\sqrt{1-8(-15)}}{4}[/tex]
[tex]x=\frac{-1\pm\sqrt{1+120}}{4}[/tex]
[tex]x=\frac{-1\pm\sqrt{121}}{4}[/tex]
[tex]x=\frac{-1\pm\sqrt{(11)^{2}}}{4}[/tex]
[tex]x=\frac{-1\pm 11}{4}[/tex]
For positive sign
[tex]x=\frac{-1+ 11}{4}[/tex]
[tex]x=\frac{10}{4}[/tex]
[tex]x=\frac{5}{2}[/tex]
For negative sign
[tex]x=\frac{-1- 11}{4}[/tex]
[tex]x=\frac{-12}{4}[/tex]
[tex]x=-3[/tex]
[tex]x=-3\ or\ \frac{5}{2}[/tex]
Therefore, the value of [tex]x=-3\ or\ \frac{5}{2}[/tex] satisfy the given equation.