Question 8 of
Question 8 (2 points)
What values of x satisfy the equation 2x2 + 3x – 10 = 2x + 5
a
x
=3/2 or x=-5
x=-5/2 or x=2
x=10 or x=-1/2
X=-3 or x=5/2
Next Page
Back

Respuesta :

Answer:

[tex]x=-3\ or\ \frac{5}{2}[/tex]

Step-by-step explanation:

Given:

Given equation is.

[tex]2x^{2} +3x-10=2x+5[/tex]

Find values of x?

Solution.

[tex]2x^{2} +3x-10=2x+5[/tex]

[tex]2x^{2} +3x-10-2x-5=0[/tex]

[tex]2x^{2} +x-15=0[/tex]

Find the roots of the equation.

compare the above equation with [tex]ax^{2} +bx+c=0[/tex]

Therefore, [tex]a=2,b=1,c=-15[/tex]

[tex]x=\frac{-b\pm\sqrt{(b)^{2}-4ac}}{2a}[/tex]

Put a,b and c value in above equation.

[tex]x=\frac{-1\pm\sqrt{(1)^{2}-4(2)(-15)}}{2(2)}[/tex]

[tex]x=\frac{-1\pm\sqrt{1-8(-15)}}{4}[/tex]

[tex]x=\frac{-1\pm\sqrt{1+120}}{4}[/tex]

[tex]x=\frac{-1\pm\sqrt{121}}{4}[/tex]

[tex]x=\frac{-1\pm\sqrt{(11)^{2}}}{4}[/tex]

[tex]x=\frac{-1\pm 11}{4}[/tex]

For positive sign

[tex]x=\frac{-1+ 11}{4}[/tex]

[tex]x=\frac{10}{4}[/tex]

[tex]x=\frac{5}{2}[/tex]

For negative sign

[tex]x=\frac{-1- 11}{4}[/tex]

[tex]x=\frac{-12}{4}[/tex]

[tex]x=-3[/tex]

[tex]x=-3\ or\ \frac{5}{2}[/tex]

Therefore, the value of [tex]x=-3\ or\ \frac{5}{2}[/tex] satisfy the given equation.

ACCESS MORE