Answer
given,
speed = 95 mph
N = 1800 rpm
diameter = 2.9 in
weight = 5.25 oz
[tex]\omega = \dfrac{2\pi N}{60}[/tex]
[tex]\omega = \dfrac{2\pi \times 1800}{60}[/tex]
ω = 188.5 rad/s
U = 95 x 1.467 ft/s
U = 139.33 ft/s
calculate the ratio [tex]\dfrac{\omega D}{2U}[/tex]
[tex]\dfrac{\omega D}{2U}=\dfrac{188.5\times \dfrac{2.9}{12}}{2\times 139.33}[/tex]
ratio = 0.163
coefficient of lift corresponding to 0.163 from the lift and drag coefficient
C_L = 0.04
ρ is the density of air
Lift produce
[tex]L = \dfrac{1}{2}\rho U^2AC_L[/tex]
[tex]L = \dfrac{1}{2}\times 0.002389\times 133.33^2\times \dfrac{\pi}{4}\times D^2\times 0.04[/tex]
[tex]L = \dfrac{1}{2}\times 0.002389\times 133.33^2\times \dfrac{\pi}{4}\times (\dfrac{2.9}{12})^2\times 0.04[/tex]
L = 0.04238 lb
weight
[tex]W = 5.25 oz \times 0.625 \times \dfrac{lb}{oz}[/tex]
W = 0.32815 lb