Answer:
t = 1767.43 s
Explanation:
given,
diameter of fly wheel = 1.5 m
mass = 250 Kg
angular speed = 12000 rpm
= 12000 x 2π/60
= 1256.64 rad/s
torque = 50 Nm
moment of inertia of disk
[tex]I = \dfrac{1}{2}MR^2[/tex]
[tex]I = \dfrac{1}{2}\times 250 \times 0.75^2[/tex]
I = 70.3125 Kg.m²
we know,
τ = I α
[tex]\alpha = \dfrac{\tau}{I}[/tex]
[tex]\alpha = \dfrac{50}{70.3125}[/tex]
α = 0.711 rad/s²
using equation of rotational motion
ω = ω₀ + α t
1256.64 = 0 + 0.711 x t
t = 1767.43 s