Answer:
[tex]P(0.26 \leq p \leq 0.43)=0.7204-0.0032=0.7172[/tex]
Step-by-step explanation:
Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".
The Z-score is "a numerical measurement used in statistics of a value's relationship to the mean (average) of a group of values, measured in terms of standard deviations from the mean".
The population proportion have the following distribution
[tex]p \sim N(p=0.4,\sqrt{\frac{p(1-p)}{n}}=\sqrt{\frac{0.4(1-0.4)}{91}}=0.0514)[/tex]
And we can solve the problem using the z score on this case given by:
[tex]z=\frac{p_o -p}{\sqrt{\frac{p(1-p)}{n}}}[/tex]
We are interested on this probability:
[tex]P(0.26 \leq p \leq 0.43)[/tex]
And we can use the z score formula, and we got this:
[tex]P(\frac{0.26 -0.4}{\sqrt{\frac{0.4(1-0.4)}{91}}} \leq Z \leq \frac{0.43 -0.4}{\sqrt{\frac{0.4(1-0.4)}{91}}})[/tex]
[tex]P(-2.726 \leq Z \leq 0.584)[/tex]
And we can find this probability like this:
[tex]P(-2.726 \leq Z \leq 0.584)=P(Z<0.584)-P(Z<-2.726)=0.7204-0.0032=0.7172[/tex]