Answer: (30.49 years, 42.31 years)
Step-by-step explanation:
The formula to find the confidence interval is given by :-
[tex]\overline{x}\pm z^*\dfrac{\sigma}{\sqrt{n}}.[/tex]
, where [tex]\overline{x}[/tex] = Sample mean
z* = Critical value.
[tex]\sigma[/tex] = Population standard deviation.
n= Sample size.
As per given , we have
[tex]\overline{x}=36.4[/tex]
[tex]\sigma=14.5[/tex]
n= 40
We know that the critical value for 99% confidence interval : z* = 2.576 (By z-table)
A 99 percent confidence interval for µ, the true mean age of guests will be :
[tex]36.4\pm (2.576)\dfrac{14.5}{\sqrt{40}}\\\\ 36.4\pm (2.576)2.29265130362\\\\=36.4\pm5.90586975813\\\\\approx36.4\pm5.91\\\\=(36.4-5.91,\ 36.4+5.91)\\\\=(30.49,\ 42.31) [/tex]
∴ a 99 percent confidence interval for µ, the true mean age of guests = (30.49 years, 42.31 years)