Respuesta :
Answer: The value of [tex]K_{eq}[/tex] is [tex]4.66\times 10^{-5}[/tex]
Explanation:
We are given:
Initial moles of ammonia = 0.0120 moles
Initial moles of oxygen gas = 0.0170 moles
Volume of the container = 1.00 L
Concentration of a substance is calculated by:
[tex]\text{Concentration}=\frac{\text{Number of moles}}{\text{Volume}}[/tex]
So, concentration of ammonia = [tex]\frac{0.0120}{1.00}=0.0120M[/tex]
Concentration of oxygen gas = [tex]\frac{0.0170}{1.00}=0.0170M[/tex]
The given chemical equation follows:
[tex]4NH_3(g)+3O_2(g)\rightleftharpoons 2N_2(g)+6H_2O(g)[/tex]
Initial: 0.0120 0.0170
At eqllm: 0.0120-4x 0.0170-3x 2x 6x
We are given:
Equilibrium concentration of nitrogen gas = [tex]2.20\times 10^{-3}M=0.00220M[/tex]
Evaluating the value of 'x', we get:
[tex]\Rightarrow 2x=0.00220\\\\\Rightarrow x=\frac{0.00220}{2}=0.00110M[/tex]
Now, equilibrium concentration of ammonia = [tex]0.0120-4x=[0.0120-(4\times 0.00110)]=0.00760M[/tex]
Equilibrium concentration of oxygen gas = [tex]0.0170-3x=[0.0170-(3\times 0.00110)]=0.0137M[/tex]
Equilibrium concentration of water = [tex]6x=[6\times 0.00110]=0.00660M[/tex]
The expression of [tex]K_{eq}[/tex] for the above reaction follows:
[tex]K_{eq}=\frac{[N_2]^2\times [H_2O]^6}{[NH_3]^4\times [O_2]^3}[/tex]
Putting values in above expression, we get:
[tex]K_{eq}=\frac{(0.00220)^2\times (0.00660)^6}{(0.00760)^4\times (0.0137)^3}\\\\K_{eq}=4.66\times 10^{-5}[/tex]
Hence, the value of [tex]K_{eq}[/tex] is [tex]4.66\times 10^{-5}[/tex]