9. The first step in industrial nitric acid production is the catalyzed oxidation of ammonia. Without a catalyst, a different reaction predominates: 4NH3(g) + 3O2(g) ⇔ 2N2(g) + 6H2O(g) When 0.0120 mol gaseous NH3 and 0.0170 mol gaseous O2 are placed in a 1.00 L container at a certain temperature, the N2 concentration at equilibrium is 2.20×10-3 M. Calculate Keq for the reaction at this temperature.

Respuesta :

Answer: The value of [tex]K_{eq}[/tex] is [tex]4.66\times 10^{-5}[/tex]

Explanation:

We are given:

Initial moles of ammonia = 0.0120 moles

Initial moles of oxygen gas = 0.0170 moles

Volume of the container = 1.00 L

Concentration of a substance is calculated by:

[tex]\text{Concentration}=\frac{\text{Number of moles}}{\text{Volume}}[/tex]

So, concentration of ammonia = [tex]\frac{0.0120}{1.00}=0.0120M[/tex]

Concentration of oxygen gas = [tex]\frac{0.0170}{1.00}=0.0170M[/tex]

The given chemical equation follows:

                   [tex]4NH_3(g)+3O_2(g)\rightleftharpoons 2N_2(g)+6H_2O(g)[/tex]

Initial:          0.0120    0.0170

At eqllm:     0.0120-4x   0.0170-3x       2x       6x

We are given:

Equilibrium concentration of nitrogen gas = [tex]2.20\times 10^{-3}M=0.00220M[/tex]

Evaluating the value of 'x', we get:

[tex]\Rightarrow 2x=0.00220\\\\\Rightarrow x=\frac{0.00220}{2}=0.00110M[/tex]

Now, equilibrium concentration of ammonia = [tex]0.0120-4x=[0.0120-(4\times 0.00110)]=0.00760M[/tex]

Equilibrium concentration of oxygen gas = [tex]0.0170-3x=[0.0170-(3\times 0.00110)]=0.0137M[/tex]

Equilibrium concentration of water = [tex]6x=[6\times 0.00110]=0.00660M[/tex]

The expression of [tex]K_{eq}[/tex] for the above reaction follows:

[tex]K_{eq}=\frac{[N_2]^2\times [H_2O]^6}{[NH_3]^4\times [O_2]^3}[/tex]

Putting values in above expression, we get:

[tex]K_{eq}=\frac{(0.00220)^2\times (0.00660)^6}{(0.00760)^4\times (0.0137)^3}\\\\K_{eq}=4.66\times 10^{-5}[/tex]

Hence, the value of [tex]K_{eq}[/tex] is [tex]4.66\times 10^{-5}[/tex]