For what value of a does 9 = (StartFraction 1 Over 27 EndFraction) Superscript a + 3?
Negative eleven-thirds
Negative seven-thirds
Seven-thirds
Eleven-thirds

Respuesta :

Answer:

[tex]a=-\frac{11}{3}[/tex]

Step-by-step explanation:

We want to find the value of [tex]a[/tex] for which [tex]9=(\frac{1}{27})^{a+3}[/tex].

We rewrite with a base of 3 to get:

[tex]3^2=(\frac{1}{3^3})^{a+3}[/tex].

Recall that: [tex]\frac{1}{a^n}=a^{-n}[/tex]

[tex]\implies 3^2=3^{-3(a+3)}[/tex].

We now equate the exponents to get:

[tex]2=-3(a+3)[/tex]

[tex]2=-3a-9[/tex]

[tex]2+9=-3a[/tex]

[tex]11=-3a[/tex]

[tex]a=-\frac{11}{3}[/tex]

The first choice is correct

Answer:

A. -11/3

Step-by-step explanation:

:)