Respuesta :
Answer:
x = 25
Step-by-step explanation:
Given
4[tex]x^{\frac{3}{2} }[/tex] - 100 = 400 ( add 100 to both sides )
4[tex]x^{\frac{3}{2} }[/tex] = 500 ( divide both sides by 4 )
[tex]x^{\frac{3}{2} }[/tex] = 125 ( square both sides )
x³ = 15625 (take the cube root of both sides )
x = [tex]\sqrt[3]{15625}[/tex] = 25
Answer:
The value that makes the equation true is 25.
Step-by-step explanation:
The given expression is
[tex]4x^{\frac{3}{2} } -100=400[/tex]
We solve for [tex]x[/tex]
[tex]4x^{\frac{3}{2} } -100=400\\4x^{\frac{3}{2} } =400+100\\4x^{\frac{3}{2} } =500\\x^{\frac{3}{2} } =\frac{500}{4}\\ x^{\frac{3}{2} } =125\\(x^{\frac{3}{2} })^{\frac{2}{3} } =(125)^{\frac{2}{3} } \\x=\sqrt[3]{125^{2} } =(\sqrt[3]{125} )^{2} \\x=5^{2}\\ x=25[/tex]
Therefore, the value that makes the equation true is 25.