Answer:
The distance between them changing 33.7 feet/second.
Step-by-step explanation:
The above situation forms a right angled triangle of base "a" and height "b".
Let "h" be the hypotenuse.
So, [tex]h^2 = ax^2 + b^2[/tex]
Differentiating with respect to the time "t"
[tex]2h\frac{dh}{dt} = 2a\frac{da}{dt} + 2b\frac{db}{dt}[/tex]
When we divide both sides by 2, we get
[tex]h\frac{dh}{dt} = a\frac{da}{dt} + b\frac{db}{dt}[/tex]
Here we have to find [tex]\frac{dh}{dt}[/tex]
Given: [tex]\frac{da}{dt} = 66, \frac{db}{dt} = 15[/tex]
We are given the horizontal distance = a = 66 ft and vertical distance = 200 + 15 = 215 ft
h² = 215² + 66² = 50581
Taking square root on both sides, we get
h = 225 ft
Plug in these values in the derivative, we get
[tex]h\frac{dh}{dt} = a\frac{da}{dt} + b\frac{db}{dt}[/tex]
225[tex]\frac{dh}{dt}[/tex]= (66×66) + (215×15)
(225) [tex]\frac{dh}{dt}[/tex] = 7581
[tex]\frac{dh}{dt}[/tex] = 7581 ÷ 225
[tex]\frac{dh}{dt}[/tex] = 33.69
[tex]\frac{dh}{dt}[/tex] = 33.7 feet/second.
So the distance between them changing 33.7 feet/second.