Answer:
Explanation:
mass, m = 0.520 kg
K = 8 N/m
Amplitude, A = 10.8 cm
(a)
Angular speed, [tex]\omega =\sqrt{\frac{K}{m}}[/tex]
[tex]\omega =\sqrt{\frac{8}{0.520}}=3.92[/tex]
maximum speed = ωA = 3.92 x 10.8 = 42.34 cm/s
(b) maximum acceleration, a = ω²A = 3.92 x 3.92 x 10.8 = 166 cm/s^2
(c) Speed of the particle is given by
[tex]v=\omega \sqrt{A^{2}-y^{2}}[/tex]
[tex]v=3.92 \sqrt{10.8^{2}-6.80^{2}}[/tex]
v = 33 cm/s
(d) acceleration
a = ω²y = 3.92 x 3.92 x 6.80 = 104.5 cm/s^2
(e) x = A Sinωt
2.80 = 10.8 Sin 3.92 t
Sin 3.92 t = 0.259
3.92 t = 0.262
t = 0.0668 second