Answer:
283.33 N/m
23.121 rad/s
3.67982 Hz
0.27175 second
5 cm
1.15605 m/s
26.72903205 m/s²
2.6767 cm
0.97643 m/s
-14.30946 m/s²
Explanation:
Spring constant is given by
[tex]k=\dfrac{F}{x}\\\Rightarrow k=\dfrac{8.5}{0.03}\\\Rightarrow k=283.33\ N/m[/tex]
Spring constant is 283.33 N/m
Angular frequency is given by
[tex]\omega=\sqrt{\dfrac{k}{m}}\\\Rightarrow \omega=\sqrt{\dfrac{283.33}{0.53}}\\\Rightarrow \omega=23.121\ rad/s[/tex]
Angular frequency is 23.121 rad/s
Frequency is given by
[tex]f=\dfrac{\omega}{2\pi}\\\Rightarrow f=\dfrac{23.121}{2\pi}\\\Rightarrow f=3.67982\ Hz[/tex]
Frequency is 3.67982 Hz
Time period is given by
[tex]T=\dfrac{1}{f}\\\Rightarrow T=\dfrac{1}{3.67982}\\\Rightarrow T=0.27175\ s[/tex]
Time period is 0.27175 seconds
Amplitude is x = 5 cm
Energy is given by
[tex]E=\dfrac{1}{2}kA^2\\\Rightarrow E=\dfrac{1}{2}283.33\times 0.05^2\\\Rightarrow E=0.3541625\ J[/tex]
Maximum velocity is given by
[tex]v_m=A\omega\\\Rightarrow v_m=0.05\times 23.121\\\Rightarrow v_m=1.15605\ m/s[/tex]
The maximum velocity is 1.15605 m/s
Maximum acceleration is given by
[tex]a_m=A\omega^2\\\Rightarrow a_m=0.05\times 23.121^2\\\Rightarrow a_m=26.72903205\ m/s^2[/tex]
Maximum acceleration is 26.72903205 m/s²
Displacement is given by
[tex]x=Acos(\omega t)\\\Rightarrow x=5cos(23.121\times 0.5)\\\Rightarrow x=2.6767\ cm[/tex]
Displacement is 2.6767 cm
Velocity is given
[tex]v=-A\omega sin(\omega t)\\\Rightarrow v=-0.05\times 23.121sin(23.121\times 0.5)\\\Rightarrow v=0.97643\ m/s[/tex]
Velocity is 0.97643 m/s
Acceleration is given by
[tex]a=-A\omega^2 cos(\omega t)\\\Rightarrow a=-0.05\times 23.121^2cos(23.121\times 0.5)\\\Rightarrow a=-14.30946\ m/s^2[/tex]
Acceleration is -14.30946 m/s²