Respuesta :

Answer:

Answer:The correct option is A). [tex]3x^{2} -2x+5[/tex]

Given of x value and respective f(x) are

x     f(x)

-1     10

0      5

2      13

To find f(x):

Given that f(x) is a parabola.

we know that parabola is polynomial of degree 2

The equation of parabola is ax^2+bx+c=0

For x=(-1) and f(x)=10

f(x)=[tex]ax^{2} +bx+c[/tex]

f(-1)=[tex]a(-1)^{2} +b(-1)+c[/tex]

10=[tex]a(-1)^{2} +b(-1)+c[/tex]

a-b+c=10            Equation 1

For x=0 and f(x)=5

f(x)=[tex]ax^{2} +bx+c[/tex]

f(0)=[tex]a(0)^{2} +b(0)+c[/tex]

c=5                     Equation 2

For x=2 and f(x)=13

f(x)=[tex]ax^{2} +bx+c[/tex]

f(2)=[tex]a(2)^{2} +b(2)+c[/tex]

13=[tex]a(2)^{2} +b(2)+c[/tex]

4a+2b+c=13       Equation 3

From equation 1 and equation 2,

a-b+c=10 and c=5

a-b+c=10

a-b+5=10

a-b=(5)

From equation 3 and equation 2,

4a+2b+c=13 and c=5

4a+2b+c=13

4a+2b+5=13

4a+2b=8

For value of a and b:

Equation 4: a-b=(5)

Equation 4: a-b=(5)Equation 5: 4a+2b=8

We write as,

4a+2b=8

4(5+b)+2b=8

(20+4b)+2b=8

20+6b=8

6b=-12

b=(-2)

hence,

a-b=(5)

a-(-2)=(5)

a=3

Therefore, the value of a =3, b=(-2) and c=5

Thus,

The equation of a f(x) is [tex]3x^{2} -2x+5[/tex]

The correct option is A). [tex]3x^{2} -2x+5[/tex]