A transverse traveling wave on a taut wire has an amplitude of 0.200 mm and a frequency of 500 Hz. It travels with a speed of 196 m/s. (a) Write an equation in SI units of the form y 5 A sin (kx 2 vt) for this wave. (b) The mass per unit length of this wire is 4.10 g/m. Find the tension in the wire.

Respuesta :

Answer:

(a). The value of A, k and ω is [tex]2\times10^{-4}\ m[/tex], 16.02 rad/m and 3141.59 rad/s.

(b).  The tension in the wire is 157.5 N.

Explanation:

Given that,

Amplitude = 0.200 mm

Frequency = 500 Hz

Speed = 196 m/s

Mass per unit length = 4.10 g/m

Suppose we need to calculate the parameters A, k, and ω.

The equation given by

[tex]y=A\sin(kx-\omega t)[/tex]

(a). We need to calculate the amplitude

Using formula of amplitude

[tex]A=0.200\times10^{-3}\ m[/tex]

[tex]A=2\times10^{-4}\ m[/tex]

We need to calculate the angular frequency

Using formula of angular frequency

[tex]\omega=2\pi f[/tex]

[tex]\omega=2\times\pi\times500[/tex]

[tex]\omega=3141.59\ rad/sec[/tex]

We need to calculate the angular wave number

Using formula of angular wave number

[tex]k=\dfrac{\omega}{v}[/tex]

Put the value into the formula

[tex]k=\dfrac{3141.59}{196}[/tex]

[tex]k=16.02\ rad/min[/tex]

(b). We need to calculate the tension in the wire

Using formula of tension in the wire

[tex]T=v^2\times\mu[/tex]

Put the value into the formula

[tex]T=196^2\times4.10\times10^{-3}[/tex]

[tex]T=157.5\ N[/tex]

Hence, (a). The value of A, k and ω is [tex]2\times10^{-4}\ m[/tex], 16.02 rad/m and 3141.59 rad/s.

(b).  The tension in the wire is 157.5 N.

Answer:

(a) y = (0.2 x 10^-3 m)Sin (16 x - 3140 t)

(b) 157.5 N

Explanation:

Amplitude, A = 0.2 mm

Frequency, f = 500 Hz

velocity,v = 196 m/s

(a) The standard equation of a wave is

y = A Sin (kx - ωt)

Where, k = 2π/λ

where, λ is the wavelength

λ = v / f = 196 / 500 = 0.392 m

So, k = 2 x 3.14 / 0.392 = 16

ω = 2 x π x f = 2 x 3.14 x 500 = 3140 rad/s

So, the equation is

y = (0.2 x 10^-3 m)Sin (16 x - 3140 t)

(b) mass per unit length, m = 4.10 g/m = 4.10 x 10^-3 kg/m

The velocity

[tex]v=\sqrt{\frac{T}{m}}[/tex]

T = v² x m

T = 196 x 196 x 4.10 x 10^-3 = 157.5 N

Thus, the tension in the wire is 157.5 N.

ACCESS MORE