Answer:
Step-by-step explanation:
given that the heights of women in a population follow the normal distribution with mean 64.3 and standard deviation 2.6 in.
Let X be the height of the woman
a)
i) [tex]P(60<x<66) \\=0.7434- 0.0491\\=0.6943[/tex]
ii) [tex]P(X>67) = 1-0.8505\\\\=0.1495[/tex]
b) 90th percentile is 67.628
(Mean + 1.28 times std deviation)
c) Median = mean sinc enormal distribution
Median = 64.3 inches
d) P(Z>0.5) = [tex]1-0.6915\\=0.3085[/tex]
e) 10th percentile =60.972
Difference between 90th and 10th percentile
= [tex]67.628-60.972\\=6.656[/tex]
e) Each women is independent of the other.
For any woman to be taller than 67 inches is 0.1495 is constant for each women
So Y no of women taller than 67 is binomial with n =5
P(Y=1)= 0.3911