Answer:
0.55 s
Explanation:
We are given that
Mass of holiday ornament=[tex]1.5\times 10^{-2}[/tex]kg
Radius of hollow sphere=[tex]4.5\times 10^{-2}[/tex] m
We have to find the period of ornament.
Moment of inertia of the sphere about the pivot at the tree limb
[tex]I=\frac{5mR^2}{3}[/tex]
Time period,T=[tex]2\pi\sqrt{\frac{I}{mgR}}[/tex]
T=[tex]2\pi\sqrt{\frac{5mR^2}{3mgR}}[/tex]
[tex]T=2\pi\sqrt{\frac{5R}{3g}}[/tex]
g=[tex]9.8m/s^2[/tex]
Substitute the values then, we get
[tex]T=2\times \frac{22}{7}\times \sqrt{\frac{5\times 4.5\times 10^{-2}}{3\times 9.8}}[/tex]
[tex]T=0.55 s[/tex]
Hence, the time period of ornament=0.55 s