A holiday ornament in the shape of a hollow sphere with mass 1.5×10−2 kg and radius 4.5×10−2 m is hung from a tree limb by a small loop of wire attached to the surface of the sphere. If the ornament is displaced a small distance and released, it swings back and forth as a physical pendulum. Calculate its period.

Respuesta :

Answer:

0.55 s

Explanation:

We are given that

Mass of holiday ornament=[tex]1.5\times 10^{-2}[/tex]kg

Radius of hollow sphere=[tex]4.5\times 10^{-2}[/tex] m

We have to find the period of ornament.

Moment of inertia of the sphere about the pivot at the tree limb

[tex]I=\frac{5mR^2}{3}[/tex]

Time period,T=[tex]2\pi\sqrt{\frac{I}{mgR}}[/tex]

T=[tex]2\pi\sqrt{\frac{5mR^2}{3mgR}}[/tex]

[tex]T=2\pi\sqrt{\frac{5R}{3g}}[/tex]

g=[tex]9.8m/s^2[/tex]

Substitute the values then, we get

[tex]T=2\times \frac{22}{7}\times \sqrt{\frac{5\times 4.5\times 10^{-2}}{3\times 9.8}}[/tex]

[tex]T=0.55 s[/tex]

Hence, the time period of ornament=0.55 s