How many positive three-digit integers are multiples of 6?

(b) What is the probability that a randomly chosen positive three-digit integer is a multiple of 6?

(c) What is the probability that a randomly chosen positive three-digit integer is a multiple of 7?

Respuesta :

Answer with Step-by-step explanation:

a.Three digit number which is multiple of 6

102,108,...996

a=102, [tex]a_n=996[/tex]

d=108-102=6

It is an A.P because the difference between two consecutive terms is constant.

nth term of A.P is given by

[tex]a_n=a+(n-1)d[/tex]

Substitute the values then we get

[tex]996=102+(n-1)\times 6[/tex]

[tex]996-102=(n-1)\times 6[/tex]

[tex]894=6(n-1)[/tex]

[tex]n-1=\frac{894}{6}=149[/tex]

[tex]n=149+1=150[/tex]

Numbers of positive three-digit integers which are multiple of 6=150

b.Three digits number lying between 100 and 999 therefore,

Total three digit positive integers=[tex]999-100+1=900[/tex]

Probability,P(E)=[tex]\frac{favorable\;cases}{total\;number\;of\;cases}[/tex]

The probability that a random chosen positive three- digit integer is a multiple of 6=[tex]\frac{150}{900}=\frac{1}{6}=0.167[/tex]

c.Positive integers of multiply of 7 are

105,112,119,....,994

[tex]a=105,a_n=994[/tex]

d=112-105=7

Using nth term of A.P formula

[tex]994=105+(n-1)\times 7[/tex]

[tex]994-105=7(n-1)[/tex]

[tex]7(n-1)=889[/tex]

[tex]n-1=\frac{889}{7}=127[/tex]

[tex]n=127+1=128[/tex]

The probability that a random chosen positive three digit integer is a multiple of 7=[tex]\frac{128}{900}=0.142[/tex]