Which expression is equivalent to (4b−3k)^3 in expanded form?

a.64b^3−48b^2k+36bk^2−27k^3

b.64b^3−48bk^2+36b^2k−27k^3

c.64b^3−144b^2k+108bk^2−27k^3

d.64b^3−144bk^2+108b^2k−27k^3

Respuesta :

Answer:

The answer to your question is 64b³ - 48b²k + 36bk² - 27k³                            

Step-by-step explanation:

                                            (4b - 3k)³

To solve this problem, use Newton's binomial theorem

For a binomial to the third power = 1   3   3   1

                (4b)³ + (4b)²(-3k) + (4b)(-3k)² + (-3k)³

Simplification

                64b³ + (16b²)(-3k) + (4b)(9k²) - 27k³

Result

                64b³ - 48b²k + 36bk² - 27k³                            

ACCESS MORE