Answer:
Trial- 2 shows the conservation of momentum in a closed system.
Step-by-step explanation:
Given: Mass of balls are [tex]m= 1.0\ kg[/tex]
Conservation of momentum in a closed system occurs when momentum before collision is equal to momentum after collision.
- Let initial velocity of ball [tex]A\ is\ u_1[/tex]
- Initial velocity of ball [tex]B\ is\ u_2[/tex]
- Final velocity of ball [tex]A\ is\ v_1[/tex]
- Final velocity of ball [tex]B\ is\ v_2[/tex]
- Momentum before collision [tex]= mu_1+mu_2[/tex]
- Momentum after collision [tex]=mv_1+mv_2[/tex]
Now, According to conservation of momentum.
Momentum before collision = Momentum after collision
[tex]mu_1+mu_2=mv_1+mv_2[/tex]
We will plug each trial to this equation.
Trial 1
[tex]mu_1+mu_2=mv_1+mv_2\\1.0(1)+1.0(-2)=1.0(-2)+1.0(-1)\\1-2=-2-1\\-1=-3[/tex]
Trial 2
[tex]mu_1+mu_2=mv_1+mv_2\\1.0(.5)+1.0(-1.5)=1.0(-.5)+1.0(-\.5)\\.5-1.5=-.5-.5\\-1=-1[/tex]
Trial 3
[tex]mu_1+mu_2=mv_1+mv_2\\1.0(2)+1.0(1)=1.0(1)+1.0(-2)\\2+1=1-2\\3=-1[/tex]
Trial 4
[tex]mu_1+mu_2=mv_1+mv_2\\1.0(.5)+1.0(-1)=1.0(1.5)+1.0(-1.5)\\.5-1=1.5-1.5\\-.5=0[/tex]
We can see only Trial 2 satisfies the princple of conservation of momentum. That is momentum before collison should equal to momentum after collision.