Respuesta :

Answer:

Therefore,

[tex]BC=y=10.61\ units\\\\AC=x=8.6\ units[/tex]

Step-by-step explanation:

Consider a Δ ABC with

m∠ B= 45°

m∠ C = 90°

AB = c = 15 cm

To Find:

BC = a = y ?

Solution:

Triangle sum property:

In a Triangle sum of the measures of all the angles of a triangle is 180°.

[tex]\angle A+\angle B+\angle C=180\\\\\angle B +35+90+=180\\\therefore m\angle A =180-125=55\°[/tex]

We know in a Triangle Sine Rule Says that,

In Δ ABC,

[tex]\frac{a}{\sin A}= \frac{b}{\sin B}= \frac{c}{\sin C}[/tex]

substituting the given values we get

[tex]\frac{a}{\sin 55}= \frac{b}{\sin 35}= \frac{15}{\sin 90}[/tex]

∴ [tex]\frac{y}{\sin 55}= \frac{15}{1}\\\\y=\sin 55\times 15\\\\y=10.606\\\therefore BC = y = 10.61\ units[/tex]

Similarly for 'x',

[tex]\frac{x}{\sin 35}= \frac{15}{1}[/tex]

[tex]\therefore x =\sin 35\times 15\\\therefore x =0.5735\times 15\\\therefore x =8.6\\[/tex]

Therefore,

[tex]BC=y=10.61\ units\\\\AC=x=8.6\ units[/tex]

Ver imagen inchu420
ACCESS MORE