Respuesta :

Answer:

Options A and D are answers.

Step-by-step explanation:

The ordered pairs are given in the table in options. We have to choose which table gives a straight line.

We know that if the increase or decrease of y value with respect to corresponding x values is uniform then the plot of those x and y corresponding values will form a straight line.

Now, in table A, the slope of each pair of x and y values is constant i.e.  

[tex]\frac{- 1 - 0}{- 2 - ( - 1)} = \frac{0 - 1}{- 1 - 0} = \frac{1 - 6}{0 - 5} = 1[/tex]

Hence, it will give a straight line.

In table B, the slope of each pair of x and y values is not constant i.e.

[tex]\frac{7 - (- 3)}{- 2 - 0} \neq  \frac{- 3 - 12}{0 - 3}[/tex].

Hence, the plotted graph will not give a straight line.

In table C, the slope of each pair of x and y values is not constant i.e.

[tex]\frac{- 3 - 5}{- 4 - 0} = \frac{5 - 9}{0 - 2} \neq  \frac{9 - 12}{2 - 5}[/tex]

Hence, it will not give a straight line.

In table D,  the slope of each pair of x and y values is constant i.e.

[tex]\frac{-8 - (- 4)}{- 2 - 0} = \frac{- 4 - 4}{0 - 4} = \frac{4 - 8}{4 - 6}[/tex]

Hence, it will give a straight line.

So, options A and D answer.

ACCESS MORE