Respuesta :
Answer:
(A) The percentage p(t) of carbon dioxide in the room as a function of time t (in minutes) is [tex]p(t)=0.55\%\left(0.63e^{-\frac{t}{90}}+0.09\right)[/tex].
(B) The percentage of carbon dioxide will approach 0.0495%.
Step-by-step explanation:
Mixing problems are an application of separable differential equations. They’re word problems that require us to create a separable differential equation based on the concentration of a substance in a vessel.
Let y(t) be the total volume of carbon dioxide in the room.
The main equation that we’ll be using to model this situation is
Rate of change y(t) = Rate at which y(t) enters the room - Rate at which y(t) exits the room
where
Rate at which y(t) enters the room: (flow rate of gas entering) x (concentration of substance in gas entering)
Rate at which y(t) exits the room: (flow rate of gas exiting) x
(concentration of substance in gas exiting)
Fresh air enters the room at rate [tex]2 \frac{m^3}{min}[/tex], and 0.05% of this air is carbon dioxide, so the rate at which carbon dioxide enters the room is [tex]2 \cdot 0.0005 = 0.001 \frac{m^3}{min}[/tex].
The air mixture leaves the room at rate [tex]2 \frac{m^3}{min}[/tex], and the concentration of carbon dioxide in this air is [tex]\frac{y}{180}[/tex], so the rate at which carbon dioxide leaves the room is [tex]2 \cdot \frac{y}{180} = \frac{y}{90} \frac{m^3}{min}[/tex].
Thus, the differential equation that governs the system is
[tex]\frac{dy}{dt}=0.001-\frac{y}{90}[/tex]
Rearrange the above equation
[tex]\frac{dy}{0.001-\frac{y}{90} }=dt[/tex]
Integrate both sides
[tex]\int \frac{dy}{0.001-\frac{y}{90} }=\int dt\\\\-90\ln \left|0.001-\frac{y}{90} \right|=t+C[/tex]
Solve for y
[tex]-90\ln \left|0.001-\frac{y}{90} \right|=t+C\\\\\ln \left|0.001-\frac{y}{90} \right|=-\frac{t}{90} +\frac{C}{90}\\\\\left|0.001-\frac{y}{90} \right|=e^{-\frac{t}{90} +\frac{C}{90}}\\\\0.001-\frac{y}{90}=\pm e^{-\frac{t}{90} +\frac{C}{90}}\\\\\frac{y}{90}=0.001-(\pm e^{-\frac{t}{90} +\frac{C}{90}})\\\\y=0.09+Ce^{-t/90}[/tex]
Now we need to use the initial condition: the room contains 0.4% carbon dioxide at time t = 0, so [tex]y(0) = 180 \cdot 0.004 = 0.72 \:m^3[/tex]. Then
[tex]0.72=0.09+Ce^{-0/90}\\C=0.63[/tex]
The particular solution that describes this system is
[tex]y(t)=0.09+0.63e^{-t/90}[/tex]
where y(t) is the volume of carbon dioxide.
(A) The percentage of carbon dioxide is:
[tex]p(t)=100\%\cdot \frac{y(t)}{180}\\\\p(t)=100\%\cdot \frac{0.09+0.63e^{-t/90}}{180}\\\\p(t)=0.55\%\left(0.63e^{-\frac{t}{90}}+0.09\right)[/tex]
(B) To find out what happens in the long run, we can take the limit as [tex]t\rightarrow \infty[/tex]
[tex]\lim _{t\to \infty }\left(0.55\left(0.63e^{-\frac{t}{90}}+0.09\right)\right)\\\\0.55\cdot \lim _{t\to \infty \:}\left(0.63e^{-\frac{t}{90}}+0.09\right)\\\\0.55\left(\lim _{t\to \infty \:}\left(0.63e^{-\frac{t}{90}}\right)+\lim _{t\to \infty \:}\left(0.09\right)\right)\\\\0.55\left(0+0.09\right)\\\\0.0495[/tex]
The percentage of carbon dioxide will approach 0.0495%
The percentage of carbon dioxide contained in the room as a function of
time is given by the rate of change of the carbon dioxide content.
Responses:
- [tex]p(t) = \underline{\left(0.05 + 0.35\cdot e^{\dfrac{-t }{90}} \right) \%}[/tex]
- [tex]\displaystyle \lim_{t \to \infty} p(t) = \underline{0.05\%}[/tex]
Which method can be used to find the percentage as a function of time?
Given parameters:
Volume of air in the room = 180 m³
Percentage of carbon dioxide in the air in the room = 0.4%
Percentage of carbon dioxide in air entering the room = 0.05%
Rate at which air flows into the room = 2 m³/min
Therefore;
Volume of carbon dioxide entering = 0.05/100 * 2 = 0.001 m³/min
[tex]Concentration \ of \ CO_2 \ in \ the \ air \ leaving \ the \ room = \mathbf{ \dfrac{x}{180}}[/tex]
[tex]Rate \ of \ CO_2 \ leaving \ the \ room = 2 \times \dfrac{x}{180} \ m^3/min = \mathbf{\dfrac{x}{90} \ m^3/min}[/tex]
Volume rate at which CO₂ leaves the room = [tex]\frac{2 \cdot x}{180}[/tex] = [tex]\frac{x}{90}[/tex]
Which gives;
[tex]\dfrac{dx}{dt} = \mathbf{0.001 - \dfrac{x}{90}}[/tex]
[tex]\dfrac{dx}{0.001 - \dfrac{x}{90}} = dt[/tex]
[tex]\mathbf{\displaystyle \int \dfrac{dx}{0.001 - \dfrac{x}{90}} }= \int\limits dt[/tex]
[tex]u = {0.001 - \dfrac{x}{90}}[/tex]
[tex]du =\mathbf{ -\dfrac{1}{90}\cdot dx}[/tex]
[tex]\displaystyle \int \dfrac{dx}{0.001 - \dfrac{x}{90}} = -90\cdot \int \dfrac{\dfrac{1}{-90} \cdot dx}{0.001 - \dfrac{x}{90}} = {-90\cdot \int \dfrac{du}{u} =-90\cdot ln\left |0.001 - \dfrac{x}{90} \right |[/tex]
Therefore;
[tex]\displaystyle \int \dfrac{dx}{0.001 - \dfrac{x}{90}} = -90 \cdot ln\left |{0.001 - \dfrac{x}{90}} \right | = t + c[/tex]
[tex]\mathbf{-90 \cdot ln\left |{0.001 - \dfrac{x}{90}} \right |}= t + c[/tex]
[tex]\left |{0.001 - \dfrac{x}{90}} \right | = \mathbf{ e^\dfrac{-t + c}{90}}[/tex]
[tex]x = 90 \times \left(0.001 - e^{\dfrac{-t + c}{90} } \right) = 0.09 + C \cdot e^{\dfrac{-t }{90} }[/tex]
At t = 0, x = 0.004 × 180 = 0.72
Therefore;
[tex]0.72 = 0.09 + C \cdot e^{\dfrac{0 }{90} } = 0.09 + C[/tex]
C = 0.72 - 0.09 = 0.63
Which gives;
- The volume of CO₂ as a function of time is; [tex]f(t) = \mathbf{0.09 + 0.63 \cdot e^{\dfrac{-t }{90} }}[/tex]
Which gives;
[tex]p(t) = \dfrac{ 0.09 + 0.63 \cdot e^{\dfrac{-t }{90} }}{180} \times 100 = \mathbf{\left(0.05 + 0.35\cdot e^{\dfrac{-t }{90}} \right) \%}[/tex]
- [tex]p(t) = \underline{\left(0.05 + 0.35\cdot e^{\dfrac{-t }{90}} \right) \%}[/tex]
Second question;
[tex]\displaystyle \lim_{t \to \infty} p(t) = \left(0.05 + \lim_{t \to \infty} \left(0.35\cdot e^{\dfrac{-t }{90}}\right) \right) \% = (0.05 + 0)\% =\mathbf{ 0.05\%}[/tex]
- [tex]\displaystyle \lim_{t \to \infty} p(t) = \underline{0.05\%}[/tex]
Learn more about differential equations here:
https://brainly.com/question/20341047